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ABSTRACT 

A Reliability-Based Design Optimization (RBDO) method 
for multiple failure regions is presented.  The method 
uses a Probabilistic Re-Analysis (PRRA) approach in 
conjunction with an approximate global metamodel with 
local refinements. The latter serves as an indicator to 
determine the failure and safe regions. PRRA calculates 
very efficiently the system reliability of a design by 
performing a single Monte Carlo (MC) simulation.  
Although PRRA is based on MC simulation, it calculates 
“smooth” sensitivity derivatives, allowing therefore, the 
use of a gradient-based optimizer. An “accurate-on-
demand” metamodel is used in the PRRA that allows us 
to handle problems with multiple disjoint failure regions 
and potentially multiple most-probable points (MPP). 
The multiple failure regions are identified by using a 
clustering technique. A maximin “space-filling” sampling 
technique is used to construct the metamodel. A 
vibration absorber example highlights the potential of the 
proposed method. 

INTRODUCTION 

Due to competitive pressures, engineers and scientists 
are facing an ever-shortening design and validation 
cycle. The desire for fast development often comes at 
the cost of reliability and robustness.  Early in the design 
phase it is necessary to make decisions based on 

incomplete information and with a minimum of physical 
and virtual tests (FEA).  In order to facilitate this 
decision-making, improved methods are required to 
assess system reliability and use it in design. 

In order to quantify the performance of a system under 
uncertainty, a method is needed to determine the 
reliability of a design. By estimating the system reliability 
at a given design point, an optimization can be 
performed to determine the design that meets all 
specifications in terms of probability of failure.  

In optimization, an objective is optimized while certain 
constraints are satisfied. The deterministic optimum 
though, does not necessarily have high reliability. To 
ensure that the optimum design is also reliable, the 
optimization formulation must include reliability 
constraints. Such a formulation is commonly referred as 
Reliability-Based Design Optimization (RBDO). RBDO 
approaches focus on maintaining design feasibility (for 
design constraints) at expected probabilistic levels. They 
account for inherent input and parameter variations in 
manufacturing processes, materials, loading, etc.  

In RBDO, probability distributions describe the 
stochastic nature of the design variables and model 
parameters. Variations are represented by standard 
deviations (typically assumed to be constant) and a 
mean performance measure is optimized subject to 
probabilistic constraints. RBDO can be a powerful 
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design tool, since it provides optimum designs in the 
presence of uncertainty. 

Efficiency and accuracy are the two main challenges in 
RBDO. The reliability, or equivalently the probability of 
failure, of each constraint must be calculated accurately 
and efficiently. The commonly used analytical methods 
(e.g. FORM) are usually efficient but inaccurate, 
especially for problems with “noisy” limit states, which 
may exhibit multiple failure regions and potentially 
multiple most-probable points. Such problems are 
common in structural dynamics. To alleviate this 
problem, simulation-based reliability methods may be 
used. However, they are computationally very expensive 
and therefore impractical for many engineering 
problems.

This paper presents a simulation-based RBDO method 
which is both accurate and efficient, using a PRRA 
method and an “accurate-on-demand” metamodel which 
allows us to handle problems with multiple disjoint failure 
regions, and potentially multiple MPPs. After an 
introduction to the analytical and simulation-based 
RBDO methods in section 1.1, we present an overview 
of the proposed RBDO method in section 2 providing 
details on the PRRA method in section 2.1, and details 
on the metamodel construction in section 2.2. Section 3 
demonstrates the proposed methodology using a 
vibration absorber example. Finally, summary and 
conclusions are presented in section 4.

1. ANALYTICAL AND SIMULATION-BASED 

METHODS IN RBDO 

For large-scale systems, the reliability prediction is 
usually based on efficient computational methods. Both 
analytical and simulation-based methods are available. 
The analytical methods are based on the MPP concept. 
They include the well-known first-order reliability method 
(FORM) that has been widely used [1], second-order 
reliability methods (SORM) [2], and multi-point 
approximation methods [3]. Among the simulation-based 
methods, the Monte Carlo Simulation (MCS) method is 
very simple and accurate. However, its computational 
cost can be prohibitively high. For this reason, more 
efficient simulation-based techniques have been 
proposed [4, 5]. Among them, the adaptive importance 
sampling (AIS) techniques are popular [6,7]. A 
combination of analytical and simulation-based methods 
has also been used [8]. The analytical methods are 
generally simple and efficient, but for complex problems, 
their accuracy cannot be guaranteed. In simulation-
based methods, the accuracy can be controlled but the 
efficiency is generally not satisfactory.

 For system reliability analysis involving multiple 
failure modes (limit states), the joint failure probability 
must be taken into account. Due to the difficulty in 
determining the joint failure probability of more than two 
failure modes except through MCS, approximations 
using first-order and second-order bounds have been 
developed [9, 10].

 Simulation-based methods are also used for 
reliability analysis involving single or multiple limit states. 
Among MCS-based methods seeking to improve 
computational efficiency, adaptive importance sampling 
(AIS) techniques use an importance sampling density 
function, which is gradually refined to reflect the 
increasing state of knowledge of the failure domain. The 
importance sampling methods are divided into direct 
methods [5, 11], updating methods [12], spherical 
schemes [11], directional sampling [13], and adaptive 
schemes [6]. All methods, except the adaptive schemes, 
require prior knowledge of the failure domain. 

2. OVERVIEW OF PROPOSED RBDO METHOD 

A simulation-based Probabilistic Re-Analysis 
(PRRA) method is presented in this paper for the design 
of real-life engineering systems under uncertainty. The 
method is efficient because it uses a combination of an 
“accurate-on-demand” global metamodel (surrogate 
model) with local refinements to assess the reliability of 
constraints in the RBDO problem. The PRRA method 
allows the design to change during the optimization 
process without requiring additional computational effort 
because it uses a single Monte Carlo simulation.

It is well known that the analytical reliability 
methods of section 1.1 are computationally efficient, and 
relatively accurate depending on the application. 
However, their accuracy deteriorates for problems with 
highly non-linear and/or “noisy” limit states. Also, they 
are not appropriate for problems with disjoint failure 
domains and multiple MPPs. Although simulation-based 
reliability methods can address the shortcomings of the 
analytical methods, they are prohibitively expensive for 
many real-world engineering systems. 

The proposed methodology is a simulation-
based RBDO method which is computationally efficient 
and accurate. The high computational effort of most 
RBDO methods is due to the repeated evaluations of the 
reliability of each constraint. The PRRA method in this 
work drastically reduces the effort to estimate the 
reliability of a constraint. Quite often even a single MC 
simulation can be very expensive. For this reason, we 
use an “accurate-on-demand” global metamodel with 
local refinements to perform the single MC simulation 
very efficiently. We describe the basics of the PRRA 
method in section 2.1, and the “accurate-on-demand” 
metamodeling technique in section 2.2.

2.1.  ESTIMATION OF FAILURE PROBABILITY IN 
PRRA

The probability of failure of a system is the integral of the 
joint PDF fX(x) times the failure indicator function, over 
the range of the random variables,

��
X X xxx dfIp f )()(     (1) 

In Importance Sampling (IS), sample values of the 
random variables are generated using a sampling PDF 
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)(xX
Sf  that yields many failures with high probability of 

occurrence, instead of the true PDF fX(x).  An estimation 
of the probability of failure in this case is
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where I(x) is the failure indicator function.  An unbiased 
estimator of the probability of failure is, 
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where xi, i=1,…, N are the sample values of the random 
design variables generated from the sampling PDF 

)(xX
Sf , and Nf is the number of failures.  The sum of the 

right hand side is only for those replications in which the 
system fails. 

 Assume that random variables X and Y are 
statistically independent, )()(),(, yxyx YXYX fff � , where 

),(, yxYXf  is the joint PDF of X and Y, and )(xXf  and 

)(yYf  are the marginal PDFs of these variables. A 
designer can control the mean value of X but not Y. The 
key idea of PRRA is that it is sufficient to calculate the 
failure indicator function of a system only for a single 
sample of values, {xi , yi i = 1,.., N} of random variables 
X and Y in order to estimate the system failure 
probability for other PDFs. Indeed, if one generates a 
sample from ),( yxYX,

Sf  and calculates and saves the 
sample values that caused system failure {xi , yi i = 1,.., 
Nf}, then one can reuse these sample values to estimate 
the probability of failure fp  for another PDF, ),(, yxYXf ,
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 Eq. (4) holds for any combination of PDFs in the 
numerator and denominator such that the support (set of 
all values for which a function is non zero) of ),( yxYX,

Sf

contains the support of ),(, yxYXf .

 Eq. (4) allows us to estimate the failure 
probabilities of many designs very efficiently because it 
only requires calculation of ratios of PDFs; it does not 
require calculation of the failure indicator function. This 
reduces the cost of system reliability analysis by several 
orders of magnitude because the calculation of the 
failure indicator function dominates the cost of 
simulation. The probability of system failure as a function 
of the mean values of the design variables µX is, 
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where ),( XX µxf  is the PDF of X given the mean value 
of the vector of the random variables X as a function of 
the mean values of these variables µX.

 An unbiased estimator of the standard deviation 
of the system failure probability is, 
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The 1-� level confidence interval of the system failure 
probability is, 

fp
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 where 
2

1,1
�

��N
t  is the point that has below its probability 

1-�/2 for Student’s  t-distribution with (k-1) DOF. This 
interval covers the true system probability of failure with 
probability 1-�.

 An algorithm is described below for efficient 
estimation of the failure probability for many different 
mean values of the random design variables.

1. Select a sampling PDF ),( yxYX,
Sf  for the random 

variables.
2. Generate a sample of values of variables X and Y.
3. Calculate the system failure indicator function, I(xi,

yi), for the sample values in step 2. Select the 
subset of sample values that caused system failure.

4. Estimate the system failure probability using Eq. (5). 
The standard deviation of this probability and a 
confidence interval can be also calculated using Eqs 
(6) and (7).

 The inputs to PRRA are the sampling PDF, the 
sample of values that caused failure and the PDF for 
which the failure probability is to be estimated. The 
output consists of the probability of failure and its 
confidence bounds if needed.  PRRA is non-intrusive 
because it does not require modifications of the 
computer codes used for deterministic analysis and 
reliability analysis through MCS. 

 A two-dimensional example is used here to 
demonstrate graphically how the PRRA can be used in 
design. Although it is a low-dimensional problem, it is 
very challenging because of the highly non-linear limit 
state around the MPP.  As such, it has been used in 
previous studies [14, 15].  The non-linear limit state 

function is defined as 180),( 3
2

3
121 ��� xxxxg , where 1x

and 2x  are independent, normally distributed random 
variables with standard deviation 5.  A design 
optimization algorithm shifts the mean values of the 
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variables in order to minimize an objective while 
satisfying all constraints with a given probability of failure 
(see section 2). The objective of this example is to 
estimate efficiently the probability of failure as a function 
of the mean values of these variables and to determine 
those designs whose failure probability is no greater 
than some upper limit.

First, we generate 100,000sample points assuming that 
random variables 1x  and 2x  have mean values 10 and 
9.5, respectively.  Figure 1 shows the limit state as a 
green line and the generated MCS sample points as 
blue dots.  Then, sample points are selected among the 
MCS points by using the maximin algorithm in section 
2.2.  This algorithm has the advantage that it places 
points both on the boundary and on the interior of the 
domain of the random variables.  The limit state function 
is evaluated at each point, and a metamodel is 
constructed.  The metamodel is then refined (see 
section 2.4) in order to identify all “failure” points.

When we shift the mean values of random variables x1

and x2, we change the probability of failure (constraint 
violation).  PRRA (Eq. 5) is used to estimate the 
probability of failure for many combinations of the mean 
values of these random variables by using information 
from a single MCS.  Figure 1 shows combinations of the 
mean values of the random variables (corresponding to 
the red dots) for which the system probability of failure is 
0.01.

Figure 1.  Identification of points with 0.01 probability of 
failure

2.2 MAXIMIN SAMPLING METHOD 

We use an easy to implement maximin method in which 
the addition of new samples preserves by default, the 
“space-filling” properties. This is a very important 
property which allows us to construct “converged” 
metamodels with a small number of samples. 
Convergence is practically achieved if the reconstructed 
metamodel after a few more samples are added, gives 
similar predictions with the previous version. Similar 
predictions are judged based only on the sign, and not 
the estimated actual value, of the limit state.

Consider a design � �nnD xxx �,, 21�  which is 

composed of a collection of k-dimensional samples 
nik

i ,...,1, ���x . A few judiciously selected samples 

from
nD  define the maximin distance design D where, 

nDD � . Let � �vu,d  be the Eucledian distance between 

samples u and v, where D�vu, . Design D simply 
maximizes the minimum inter-site distance � �vu

vu
,min

,
d

D�
,

i.e.

D
max � �vu

vu
,min

,
d

D�
.    (8) 

In this paper, the maximin sampling technique of Eq. (8) 
is implemented in a straightforward way. Assume that a 
design

nD  of n, k-dimensional samples is available, 

consisting of n MC samples. Each of the k components 
of the n MC samples is normalized between zero and 
one in order to account for potentially different units. If x
denotes the kth component, its normalized value is 

� � � �LHL xxxxx ��� /* , where Lx  and Lx  are the low and 
high values respectively, among all n samples. 

Point � �***
1

*
1 ki xxx ���x , where kixi ,...,1,* �  is 

the mean *
ix  coordinate of all n normalized points, is first 

selected as a “seed” point. Then the distance of all n
normalized points from *

1x  is calculated and the point  *
2x

with the largest distance is selected. Subsequently, the 
distances of the remaining (n-2) samples from both *

1x
and *

2x  are calculated and the point *
3x  with the 

maximum minimum distance is selected. The process is 
repeated m times in order to create the maximin 
distance design D with m sample points. It should be 
noted that the method first places sample points on the 
boundary of the domain. As more points are created, 
they are placed in the interior of the domain providing 
therefore, a “space-filling” design. A very useful property 
of the method is that the addition of new sample points 
preserves the “space-filling” properties of the new 
design. This is essential in order to keep the number of 
function evaluations low. 

2.3 AN “ACCURATE-ON-DEMAND” METAMODEL FOR 
RELIABILITY ESTIMATION

The method addresses problems with multiple 
MPPs with disjoint failure domains [14,15]. It can also 
asses for system reliability assessment in problems with 
multiple limit states. It can easily handle implicit, 
nonlinear limit-state functions, with correlated or non-
correlated random variables, which are described by any 
probabilistic distribution. The method is based on an 
“accurate-on-demand” global metamodel of the limit 
states with local refinements, which can serve as an 
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indicator to determine the “failure” and “safe” regions. 
High accuracy of the metamodel is not needed away 
from the limit states because it is simply used as a 
“failure” indicator. However, improved accuracy is 
necessary close to the limit states where sample points 
have a “low” absolute value. In this work, points with 
“low” limit-state absolute value define a transition region 
between the safe and failure regions. All samples in the 
transition region are identified, and more accurate local
metamodels of each actual limit state are generated. 
The local metamodels are used to determine if the 
transition region points are in the safe or failure 
domains.

If a limit state has multiple failure regions (that 
may be even disjoint), or if multiple limit states exist due 
to a system reliability assessment, the transition region 
points may be grouped in clusters. A clustering 
technique is used to identify these groupings so local 
metamodels can be constructed for each group. This is 
essential for handling multiple MPP problems that often 
exist in a variety of engineering applications, such as 
problems involving vibratory systems. Recently, some 
work has been reported for multiple MPP problems 
[16,17].

Although various metamodeling techniques can 
be successfully used in this work, we have chosen the 
Cross-Validated Moving Least Squares (CVMLS) [18] 
method. To construct a metamodel, a “space-filling” 
sampling algorithm is needed. Commonly used 
algorithms such as Latin Hypercube (LH) and Optimal 
Symmetric LH (OSLH) sampling [19] among others, 
place most of the samples in the interior of the domain. 
To avoid this problem, the maximin [20] “space-filling” 
sampling technique is used.

In simulation-based reliability methods, it is the 
sign of the limit state function, that is important, not the 
actual value. We predict the sign of the function in this 
study by constructing approximate metamodels that can 
efficiently identify the safe (high value) and failure (low 
value) regions. A similar idea has been reported in [21] 
using an indicator response surface and in [16] using 
discriminative sampling. 

In the following we describe the algorithm for 
constructing a metamodel for the case where the 
designer can control the mean values of all random 
variables, X. The entire sampling region is divided into a 
safe region, a failure region and a transition region 
between the safe and failure regions. The safe and 
failure regions are easily identified using an approximate 
global metamodel � �xGg~  which is also used to identify 

the transition region. The transition region includes all 
sample points x, such that � � ),(~

ulG hhg �x  where hu and 

hl are the upper and lower bound values respectively, 
estimated using the global metamodel. 

All sample points in the transition region are 
used in a clustering algorithm [22] that determines if 
there are distinct transition regions associated with 
either disjoint or different limit states. Importance 
sampling is then used to generate additional Monte 
Carlo sample points within each cluster. The sampling 
PDF is the original PDF truncated over the transition 

region in order to reduce the variance of the probability 
of failure estimation [23, 24]. 

An efficient “space-filling” sampling is 
subsequently, used based on a maximin distance 
algorithm, which efficiently selects a few sample points 
with “space-filling” properties. The maximin sampling 
method selects points from the additional MC samples.  
The selected points are used to construct a local 
metamodel g̃L x� � for each cluster of transition region 
points. Good accuracy is ensured by a series of 
refinements using a “space-filling” algorithm that places 
samples very close to the limit state within a transition 
region domain and by constructing metamodels of small, 
local regions. 

2.4 METAMODEL ALGORITHM 

The construction of an approximate global metamodel is 
described first (steps 1 through 7). Subsequently, a 
clustering technique is used which identifies potentially 
disjoint failure domains. The construction of local 
metamodels, including a series of refinements, is 
explained in steps 12 through 17.

1. Draw N sample values according from the 
distribution of the random variables. Eq. (9) 
estimates N by keeping the error in the estimated 
probability of failure less than �  % with confidence 
level � . In this work, we use 10�� % , 05.0�� and

05.0�� .

T
f

T
f

NP

P )1(
)

2
1(100% 1

�
��� � ��    (9) 

2. Using the maximin method, m sample values are 
selected from the available N values of step 1. 
Although m is kept small, it is at least equal to n+1
where n is the number of variables.

3. Calculate the limit state value for all m points of step 
2 and construct an approximate global metamodel 

� �xGg~ . A different global metamodel is constructed 

for each limit state. The choice of the metamodeling 
technique may slightly affect the efficiency of the 
proposed method. It is not however, vital to the 
success of the method. Note that � �xGg~  covers only 

the “cloud” area of the MC samples from step 1.
4. Use � �xGg~  to predict the value of each limit state for 

the N MC samples.
5. Identify the upper and lower limits, hu and hl

respectively, of the transition region.  The N values 
of step 4 are sorted in decreasing order. If 

Gg~max

and
Gg~min  represent the maximum and minimum 

values, hu and hl are equal to � �Gu gh ~max��  and 

� �Gl gh ~min�� , where �  (called the transition zone 

width parameter) is a predetermined small 
percentage. The transition region includes all MC 
samples x for which � � uGl hgh �� x~ . Their number is 

denoted by NT. It should be emphasized that NT
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includes the transition points from all limit states.
Generally a transition zone is initially selected using 
a value of 10% for � .

6. Define the safe region and the failure region. The 
former includes all MC samples x so that � � uG hg �x~ ,

and the latter includes all MC samples with 
� � lG hg �x~ . The number of points in the failure region 

is
Gn . For the points in the safe and failure regions, 

the indicator function is assigned a value of 0 and 1, 
respectively.  

7. Add p more points to the m points of step 1, and go 
to step 3. Repeat steps 3 to 6 until convergence is 
achieved. We have convergence, if the number of 
failure region points from step 6, does not change 
more than ten percent between two successive 
iterations. This “crude” convergence provides a 
compromise between accuracy and efficiency for the 
approximate global metamodels. It also defines the 
transition zone with enough accuracy for the next 
steps.

At this point, we assume that the sample points in the 
identified safe and failure regions have indeed a positive 
and negative value, respectively. However due to the 
potentially low accuracy of the approximate global 
metamodel from step 7, we are not certain about the 
positive or negative sign of the transition points. For this 
reason, local metamodels of the transition region points 
are developed which are expected to be more accurate 
because of their smaller domains. A clustering technique 
determines the number of local metamodels. 

If a limit state has multiple failure regions, or if multiple 
limit states exist due to a system reliability assessment, 
the NT transition points from the “converged” global 
metamodel of step 7 may form clusters. A clustering 
technique described below is then used to identify 
potential clusters.

8. Using all points in the transition region, clustering 
groups them in k  clusters.  Because we do not 
know the number of existing clusters a priori, we 
start with a relatively large number of clusters. 
Depending on how many points are grouped in each 
of the k  clusters, we easily determine the number of 
existing clusters 

ck  where kkc � . Subsequently, 

clustering is repeated with only 
ck  clusters. 

9. Once the number of clusters has been identified, we 
can adjust the width of the transition zone to cover 
as much area of interest as possible. The transition 
zone width parameter �  is steadily increased until 
the clustering is no longer effective. The maximum 
value maxn  of the transition zone width parameter �
(maximum value at which clustering is still effective), 
is used to define the final transition zone. Because 
for certain problems with multiple disjoint failure 
regions, the clusters might become very large in size 
before they become unrecognizable, we limit the 

size of the transition zone such that it contains no 
more than 10% of the total number of sample points.
These two guidelines ensure that the local 
metamodels are small enough for increased 
accuracy, and simultaneously include most of the 
failure points.

10. For each cluster, determine the sampling domain for 
each of the random variables.  By examining the 
maximum and minimum value of each random 
variable within the cluster, we can determine 
whether each variable is spanning the entire range 
of values as defined by its PDF, or a portion such as 
the left or right tail of the PDF. This defines a 
rectangular “sampling domain” (see dotted domain 
in Figure 8). 

11. Generate S sample points for each cluster using 
importance sampling, so that the generated points 
are in the rectangular “sampling domain” around the 
cluster. Because the number of clusters is k , each 
group of sample points is denoted by S(k).

The S(k) points for each cluster are within the domain of 
the global metamodel which can be used to predict their 
limit state value. However, the prediction may be 
inaccurate because the global metamodel is 
approximate. For this reason, we further refine the global 
metamodel locally for each cluster. To this end, we 
select additional maximin points in the rectangular 
“sampling domain,” and use them to refine the global 
metamodel. However, the “sampling domain” around a 
cluster may be much larger in size than the cluster itself. 
In order to only have points close to the cluster, we use 
Principal Component Analysis (PCA) [25] to identify a 
smaller rectangular domain within the “sampling domain” 
(see “Cluster 1 PCA” domain in Figure 8). A selected 
maximin point from the S(k) points is then kept only if it 
is within the smaller PCA domain.

12. For the kth cluster, select m points using maximin 
from the S(k) points, according to step 11. 

13. Calculate the limit state value for all m points of step 
12 and construct a local metamodel � �xLg~ . A 
different local metamodel is constructed for each 
cluster (or limit state).  These local metamodels 
cover the PCA domain as described in step 11. 

14. A “converged” local metamodel is built for each limit 
state using the iterative process of steps 3 through 
7. Points are successively selected from the S(k)
points of step 11, using the maximin approach. At 
each iteration, the current version of the local 
metamodel is used to evaluate all S(k) points, and 
identify the number mm(k) of the failed points; i.e 
points x with � � 0~ �xLg . Convergence is achieved if 
mm(k) does not change more than 10% from the 
previous iteration. A “converged” local metamodel is 
achieved with � �knL  points. 

15. The converged local metamodel from step 14 is 
used to identify � �kNTL  points x from the group of 
the S(k) points, so that 

� � � � � �LLL ggg ~min~~max �� �� x , a =0.1. These points 
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are located very close to the limit state having 
therefore, a small absolute value. 

16. At this point, a series of refinements for each local 
metamodel is performed. The maximin approach is 
used to identify m out of the � �kNTL  points of step 15 
which are added to the existing � �knL  points of step 
14, and the local metamodel is updated. Again, all 
S(k) points are evaluated using the updated local 
metamodels and a new number � �kmm  of failed 
points is identified. The process is repeated by 
adding m more points and updating the local 
metamodels, until the number � �kmm  is converged 
within a relative error of 1% from the previous 
iteration.

17. Repeat steps 12 through 16 for each of the k
clusters. 

3. A VIBRATION ABSORBER EXAMPLE 

3.1 PROBLEM DESCRIPTION 

A tuned damper system is shown in Figure 2. It consists 
of the original system and a vibration absorber. For 
simplicity, the original system has a single degree of 
freedom, and is subject to a harmonic 
excitation � � )cos( tFtf �� � . The absorber is attached to 
the original system in order to reduce its vibration 
amplitude.

Figure 2.  Tuned vibration absorber 

 The amplitude 1X  of the original system is a 
function of four parameters. In this example, we 
normalized it by the amplitude of its static response 

1/ kF  as follows  
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   (10)                

In Eq. (10), MmR �  is the ratio of the absorber mass 
to the original system mass, '  is the damping ratio of 

the original system, and ��&
11 n�  and ��&

22 n�

are the ratios of the natural frequencies 
1n�  and 

2n�  of 

the original system and vibration absorber respectively, 
to the excitation frequency � . It is assumed that the 
absorber does not provide additional damping to the 
overall system (see Figure 2). For illustration, R and '
are treated as deterministic variables with values R=0.01
and ' =0.01, respectively. Only 1&  and 2&  are random 
variables which are assumed normally distributed with 
mean 1.0 and standard deviation 0.025. 
 The absorber is added to “absorb” the vibratory 
energy when the original system is at resonance or 
close to resonance. In this case, the absorber motion 
becomes large, and the motion of the original system 
reduces considerably. In order for the absorber action to 
be effective, the absorber must be “tuned.” Tuning 
means that the natural frequency of the absorber, and 
the natural frequency of the system are approximately 
equal to the excitation frequency � ; i.e. ��� ((

21 nn ,

or equivalently, 121 (( && . In this case, the vibratory 
amplitude of the original system is almost zero, and the 
amplitude of the absorber, 
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is very high. Displacement 2y  is restricted below a 
maximum allowable value for durability.
 Figure 3 shows contours of 1y  and 2y  as a 

function of 1&  and 2& . There is a trade-off between 

effective action of the absorber (small 1y  and 

simultaneously, large 2y ), and durability of the absorber 

(small 2y ).

Figure 3.  Displacement contours of original system and 
vibration absorber 

 The objectives in this example are 1) to 
maximize the effectiveness of the absorber by 
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maximizing 2y  without exceeding a limit 802 �y  for 
durability, and 2) to reduce the risk of the normalized 
amplitude ),( 211 &&y  exceeding 28, in the presence of 
uncertainty in the natural frequencies of the original 
system and the absorber. At the same time, we want 

96.01 �&  in order to ensure an effective absorber 

action at “high” excitation frequencies 96.0
1n�� ) . To 

achieve all this, the following RBDO problem is solved

� �
21

21

,max 2
,

&&**
**

&&

y                      (12) 

          s.t.   � �� � t
fpRyP ��)� 128, 211 && ,                                                    

96.01 �&

� � 80, 212 �&&y     

where � �
21

, && ** are the means of the two random 

design variables � �21,&& , and t
fpR ��1  is the target 

reliability. The target probability of failure t
fp  is 

approximated using the target reliability index t& , and 

the standard normal cumulative distribution function � ,
as )( tt

fp &���
.
                                    

3.2 IMPLEMENTATION OF PRRA

The PRRA method calculates the probability 
� �� �28, 211 �&&yP in the RBDO problem of Eq. (11), 

using Eq. (5). The sampling PDF is assumed equal to 

� � � �2121 ),(21 &&&&&&
SSS fff �,  where � �1&Sf  and 

� �2&Sf  are normal distributions with mean 1 and 
standard deviation equal to 0.05 which is twice the 
actual standard deviation of 1&  and 2& . The sampling 
PDF can be therefore, viewed as an “inflated” actual 

distribution so that the support of ),( 2121 &&&& ,
Sf

contains the support of the true distribution  
� � � �2121 ),(

21
&&&&&& fff �,  (see section 2.1).

The “MCS Hull” in Figure 4 is a convex hull 
enclosing all generated sample points from 

),( 2121 &&&& ,
Sf . The dotted domain encloses all sample 

points of the “MCS Hull” which are within 
3�  of 

),( 2121 &&&& ,
Sf  where 
  is the standard deviation of 

the sampling distribution. The solid domains show 
representative 
3�  clouds of the actual PDF 

),( 2121
&&&& ,f  for different mean values of 1&  and 2& .

We assumed that the support of ),( 2121
&&&& ,f ,

centered at any point within the dotted domain, is 

enclosed by the support of ),( 2121 &&&& ,
Sf .

Figure 4.  Demonstration of sampling PDF and actual 
PDFs at different designs 

According to the PRRA method, it is sufficient to 
calculate the value of the failure indicator function for 
only a single sample of values, { ),( 21 ii

&& , i = 1,.., N } of 

random variables ),( 21 &&  in order to estimate the 
system failure probability for other PDFs. We therefore, 

generate a sample from ),( 2121 &&&& ,
Sf , and calculate 

and save the coordinates of the fN  sample values that 

caused failure. We then reuse them to estimate the 
probability of failure fp̂  for another PDF 

),,,(
2121 21 &&&& **&&,f  by reweighing the values of the 

failure indicator function, as 

� �
� �21,

21,

1 ,

,,,1
),(ˆ

21

2121

21 &&
**&&

**
&&

&&&&
&& S

N

i
f f

f

N
p

f

�
�

�
.

               (13) 

The PRRA method allows us to recalculate the system 
failure probability using only a single sample of values. 
The computational effort however, even for a single 
sample, may be very high. For this reason, we build a 
global metamodel with local refinements according to 
section 2.2, and use it to calculate the N values of 1y  for 

the sample { ),( 21 ii
&& , i = 1,.., N }. The following 

section provides details.

3.3 “ACCURATE-ON-DEMAND” METAMODEL

 One hundred thousand MC sample points 
(N=100,000) are generated using the � �025.0,1~1 N&
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and � �025.0,1~2 N&  distributions (step 1 of section 
2.2.1). Each point is represented by a cross in Figure 5.

Figure 5.  Sample points for vibration absorber 

 A global metamodel is first generated using the 
iterative process of steps 1 through 7. CVMLS 
metamodels are created progressively with m=5 (step 2) 
until convergence is achieved. The maximin method 
selects the points from the 100,000 MC sample points. 
The selected points for m=20, 40, and 110 are indicated 
in Figure 5 with large circles, squares and small circles, 
respectively. As points are added, we increasingly 
“space fill” the design space. The intent is to use a 
minimum number of points, and therefore function 
evaluations, without substantial loss of accuracy. A 
global metamodel is generated and used to predict the 
limit state value for all 100,000 MC sample points (step 
4). The safe, failure and transition regions are identified 
according to steps 5 and 6. Table 1 summarizes the 
number of points in each region for different number of 
selected points m.

Table 1.  Global metamodel convergence for vibration 
absorber

Number of 

Samples

Number of 

Safe Points

Number of 

Failure Points

Number of 

Transition 

Points

20 100,000 0 0
25 98,113 39 1,848
30 99,992 1 7
35 99,986 4 10
40 99,996 1 3
45 97,703 464 1,833
50 98,700 123 1,177
55 87,604 6,692 5,704
60 89,284 5,120 5,596
65 90,932 4,213 4,855
70 90,124 4,886 4,990
75 93,736 2,722 3,542
80 91,771 4,025 4,205
85 91,056 4,225 4,519
90 90,481 4,744 4,775
95 91,676 4,098 4,226
100 89,897 5,490 4,613
105 88,921 6,280 4,799
110 88,753 6,450 4,797

 According to step 7, convergence of the global 
metamodel is achieved with m=110. The 6,450 failure 
points are within 10% of the 6,280 failure points of the 
previous iteration (m=105). Therefore, 

Gn  is equal to 

6,450 (see step 6), and NT is equal to 4,797 (see step 
5). Both values are listed in the last row of Table 1. For 
the definition of the transition region, we have used 

10.0�� , as described in step 5 of the algorithm.

At this point, an approximate global metamodel has 
been obtained with “accuracy-on-demand.” Although it 
can not accurately predict all successes and failures 
among the 100,000 MC sample points, it is accurate 
enough to locate the safe, unsafe and transition zones. 

Using the converged global metamodel, we calculate the 
limit state at all N=100,000 sample points, and partition 
them into safe, unsafe and transition points. 
Subsequently, a cluster analysis is performed using the 
NT = 4797 transition points and 6450 predicted failure 
points. We initially use the large number of 10 clusters in 
order to make sure we identify all existing clusters. 
Figure 6 shows the points of the two dominant clusters.  
For clarity, we also show the disjoint failure zone, and 
the maximin points which were used to build the global 
metamodel.

Figure 6.  Identified clusters with n = 10% 

 It is clear that there are only two clusters 
containing the majority of the transition and predicted 
failure points.  The iterative process described in step 9 
is now used to steadily increase the transition zone 
width parameter � until clustering is no longer effective, 
or until we reach the maximum number of points allowed 
in the transition zone (15% of the cluster sample points).  
Starting from %10��  we increase �  by one percent at 
each iteration, until we have included 15% of the 
transition zone points. This occurs for %46.31max �� n� .

Figure 7 shows the identified transition zone and failure 
zone points.
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Figure 7.  Clusters with n = 31.46% 

 Using the two clusters of Figure 7, we determine 
a rectangular importance sampling domain for each 
cluster (see step 11). For the first cluster, 1&  varies 
between 0.8877 and 1.0465 and 2&  varies between 
0.7960 and 0.9937. The corresponding CDF range for 

1&  is 0.0123 to 0.8237 indicating that we should sample 
from the middle region with 8237.00123.0 �� s .  Similarly 
the corresponding CDF range for 2&  is 0.7959 and 
0.9937. Therefore, 2&  is sampled from the left tail with 

4501.0�s . Figure 8 shows the importance sampling 
domain with the dotted line. 

Figure 8. Importance sampling and PCA domains for 
first cluster 

 As mentioned in step 11, additional MC sample 
points are generated within the importance sampling 
domain according to the defined sampling PDFs.  
S=100,000 sample points are created, which are shown 
in Figure 8 with grey dots.  A local metamodel is then 
built according to steps 12 to 14. The maximin algorithm 
is used to successively select m=5 points (starting from 
5 points) from the S=100,000 sample points within the 
importance sampling domain, which are also within the 

PCA domain of Figure 8, and a local metamodel is built 
using the CVMLS algorithm. A converged local 
metamodel is achieved with 

Ln =10 points using the 10% 
stopping criterion of step 14.  Convergence details of the 
local metamodel are shown in Table 2. 

Table 2.  Local metamodel convergence for vibration 
absorber (1st cluster)

Number of 

Samples

Total Number 

of Samples in 

Metamodel

Number of 

Safe Points

Number of 

Failure 

Points

5 115 90,546 5,457
10 120 89,121 5,386

 This converged local metamodel is further 
refined by selecting sample points near the limit state. 
Fifteen additional groups of mm=5 samples are selected 
resulting in a change of 

%15.0100
443,11

460,11443,11
���

�

	


�

� �
 in the number of 

failure points (see Table 3), which is less than the 1% 
threshold required for convergence of the refined local 
metamodel (see step 16).  Figure 9 shows with red 
triangles, the additional 75 sample points (15 groups of 5 
points each) of Table 3. They are all located close to the 
limit state, covering also the failure domain since the 
latter is slim. It also shows with orange dots, all failure 
points as evaluated by the refined local metamodel. We 
observe that the orange dot domain overlaps with the 
actual failure domain 282 �y , indicating that the refined 
local metamodel is accurate. 

Table 3.  Refinement of local metamodel for vibration 
absorber (1st cluster)

Number of 

Samples

Total Number 

of Samples in 

Metamodel

Number of 

Safe Points

Number of 

Failure 

Points

15 125 87,131 8,537
20 130 85,376 11,079
25 135 86,028 10,063
30 140 84,786 11,416
35 145 85,560 9,785
40 150 85,703 9,686
45 155 85,674 9,248
50 160 85,114 10,397
55 165 85,639 9,220
60 170 85,381 10,644
65 175 85,794 10,200
70 180 84,996 11,489
75 185 84,999 11,620
80 190 84,916 11,443
85 195 84,951 11,460
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Figure 9. Refined local metamodel for first cluster 

The same procedure is also followed for the second 
cluster.  A local metamodel is built and refined for 
improved accuracy. The results are shown in Tables 4 
and 5. 

Table 4.  Local metamodel convergence for vibration 
absorber (2nd cluster)

Number of 

Samples

Total Number 

of Samples in 

Metamodel

Number of 

Safe Points

Number of 

Failure 

Points

5 115 92,684 5,122
10 120 94,120 4,255
15 125 94,937 3,685
20 130 95,422 3,258
25 135 92,458 4,916
30 140 92,538 4,867

Table 5.  Refinement of local metamodel for vibration 
absorber (2nd cluster)

Number of 

Samples

Total Number 

of Samples in 

Metamodel

Number of 

Safe Points

Number of 

Failure 

Points

35 145 91,483 6,567
40 150 91,226 6,910
45 155 90,581 7,697
50 160 90,575 7,651

According to the information in Tables 1 through 5, the 
number of function evaluations to build the metamodel is 
245 (110 for the global metamodel, and 85 and 50 for 
the refined local metamodels of the first and second 
clusters, respectively).

3.4 SOLUTION OF THE RBDO PROBLEM

Figure 10 shows the optimum solution of the 
RBDO problem of Eq. (11) for different values of the 

target probability of failure t
fp , or equivalently the target 

reliability index t& . First, the PRRA method was used to 
identify all points in the dotted domain of Figure 4 which 
satisfy the probabilistic constraint 

� �� � � �tRyP &&& ����)� 128, 211  with 3)t& . For 
that, the above probability was calculated using Eq. (12) 
for a set of “space-filling” ),(

21 && **  points within the 

dotted domain of Figure 4, and the data was used to 
create a metamodel of the failure probability. Note that 
the failure probability metamodel is different from the 
metamodel of section 3.3. The failure probability 
metamodel was then used to estimate the failure 
probability for a very large number of ),(

21 && **  points. 

Figure 10a shows the domain within which 
� �� � � �3128, 211 ���)�&&yP , and Figure 10b 

provides a zoomed-in version.
As we maximize 2y , the probabilistic constraint 

becomes active, resulting in the optimum solution which 

is indicated by the red point for different values of t
fp .

For t
fp  = 0.00135 ( 3�t& ), the optimum solution is  

),(
21 && **  = (0.9511, 1.0365), and for t

fp  = 0.00115, 

0.001, and 0.0009, the optimum solution is (0.9490, 
1.0378), (0.9478, 1.0394), and (0.9466, 1.0402), 
respectively. The iso-lines in Figure 10b indicate the 
value of 2y .

Figure 10a. Optimum solutions for pf < 0.00135 

 To validate the calculated optimum designs, a 
MC simulation was performed with one million sample 
points at the ),(

21 && **  = (0.9511, 1.0365) design. The 

MC simulation resulted in a probability of failure of 
0.002114 instead of 0.00135 as our method indicated 
(see previous paragraph). The reason for the 
discrepancy is that our approximate global metamodel 
did not identify the narrow portion of the failure domain 
corresponding to the 1st cluster. As shown in Fig. 7, the 
rectangular importance sampling domain of the 1st

cluster does not include the narrow portion of the failure 
domain. The fidelity of the used maximin points to build 
the global metamodel was not fine enough to capture 
the narrow failure domain. An improvement of the 
current methodology is underway to address this issue. 
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Figure 10b. Optimum solutions for pf < 0.00135 
(zoomed-in)

4. SUMMARY AND CONCLUSIONS 

An RBDO methodology has been presented 
using a Probabilistic Re-analysis (PRRA) method, and 
an “accurate-on-demand” metamodel with local 
refinements. The combination of the PRRA method and 
the metamodel improves computational efficiency with 
good accuracy. The PRRA calculates the optimum 
design with only a single Monte Carlo simulation, and 
the metamodel reduces the computational effort for the 
single Monte Carlo simulation. The metamodel is 
capable of handling problems with multiple disjoint 
failure regions and multiple most-probable points. It uses 
an approximate global metamodel which is refined 
locally for improved accuracy. The local domains are 
identified using clustering and a Principal Component 
Analysis (PCA). The overall methodology was 
demonstrated using a vibration absorber RBDO 
example, where the failure domain is disjoint with 
multiple most-probable points. The optimal design was 
obtained for different levels of system probability of 
failure, using only 245 function evaluations.
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